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Abstract
The Schrödinger equations for the Coulomb and the harmonic oscillator
potentials are solved in the cosmic string conical spacetime. The spherical
harmonics with angular deficit are introduced. The algebraic construction of
the harmonic oscillator eigenfunction is performed through the introduction
of non-local ladder operators. By exploring the hidden symmetry of the two-
dimensional harmonic oscillator the eigenvalues for the angular momentum
operators in three dimensions are reproduced. A generalization for N
dimensions is performed for both Coulomb and harmonic oscillator problems
in angular deficit spacetimes. The connection among the states and energies of
both problems in these topologically non-trivial spacetimes is thus established.

PACS numbers: 03.65.Ge, 03.65.Fd, 04.20.Gz

1. Introduction

There has been a growing interest in spacetimes with non-trivial topology and how this can
affect some aspects in classical or quantum cosmological models as well as in quantum
mechanics. This non-trivial topology is generated by topological defects such as monopoles,
strings, domain walls and branes. Their formation is associated with phase transitions in the
early universe where the vacuum is degenerate [1]. Nevertheless, stable domain walls and
monopoles are disastrous for cosmological models [2]. However, strings cause no harm and
can be a good candidate to produce several phenomena observed in the last decades such as
gravitational lenses [3, 4], particle production [5] and microwave sky anisotropy [6]. The
most interesting topic for our study is the metric structure of the cosmic string spacetime. The
metric leads to a conic spacetime. Its locally flat geometry affects non-relativistic systems only
through the non-trivial topology. Thus, a non-relativistic particle placed in the surroundings of
a straight, infinite and static string will not suffer attraction by the cosmic string gravitational
field [3].

0305-4470/02/255255+11$30.00 © 2002 IOP Publishing Ltd Printed in the UK 5255

http://stacks.iop.org/ja/35/5255


5256 J L A Coelho and R L P G Amaral

For a cosmic string spacetime the metric tensor in cylindrical coordinates (ρ, z, φ) is
gµν = diag(1,−1,−1,−ρ2) where 0 � ρ � ∞, −∞ � z � ∞, −πα � φ � πα and
α = 1 − 4Gµ, with µ being the linear density of the cosmic string. The Laplace–Beltrami
operator in these coordinates

�ψ = 1√−g
∂

∂xµ

(√−ggµν ∂

∂xν

)
ψ (1)

takes the same form as in the flat spacetime. When one takes the non-relativistic limit of a
system with the dynamics described by a covariant quantum equation such as the Dirac or
Klein–Gordon equations one will be led to the usual Schrödinger equation but with non-trivial
boundary conditions

�(φ0) = �(φ0 + 2πα) (2)

imposed by the global structure of space. Equation (2) expresses the main physical effect of
the cosmic string in spacetime introducing an unusual periodicity in the azimuthal variable.
In spite of being locally flat the spacetime acquires a global topological defect giving the
conic character to the space. The cosmic deficit angle δ = 2π(1 − α) = 8πGµ connects the
topology of space with the matter content expressed by µ and the conical aspect affects any
quantum wave solution that significantly encircles the string.

It has been noted that the cosmic string spacetime affects the quantum solutions of
central potentials. The Coulomb potential has been considered in [7] in the context of a
two-dimensional potential as generated by the cosmic string itself.

Here we consider a general radial problem and define the spherical harmonics taking into
account the angular deficit. We apply the results to the (3 + 1)D Coulomb and harmonic
oscillator problems obtaining the spectra for these potentials. These spectra have been
independently obtained in [9]. We analyse the harmonic oscillator in (2 + 1)D space subjected
to an angular deficit by an algebraic procedure and introduce a new set of ladder operators
that are obtained by taking non-integer powers of the usual ones. We consider also the
generalization of these two quantum mechanics problems to an (N +1)-dimensional spacetime
with conic topological structure. These can be originated by an (N − 2)-brane of cosmic
character. The central potential is added with the origin attached to a point of the brane. The
well-known relationship between oscillator and Coulomb problems [8] is then generalized to
hyper-conic spacetimes.

The structure of the paper is as follows. In section 2 the solution of the potential
problems in (3 + 1) dimensions is addressed. The spherical harmonics with angular deficit
are constructed. The complete eigenfunctions for the Coulomb and oscillator problems are
presented and the ladder operators for the latter potential introduced. The hidden rotational
symmetry is discussed. In section 3 the (N + 1)-dimensional generalization is performed. The
dependence of the quadratic angular momentum Casimir operator eigenvalue on the angular
deficit is obtained. The spectra of the Coulomb and oscillator problems are obtained and
related. Section 4 presents the final comments.

2. Coulomb and quantum oscillator problems in (3 + 1)-D conical spacetime

Let us consider spherical coordinates (r, θ, φ) in which the cosmic string metric tensor reads
gµν = diag(1,−1,−r2,−r2 sin2 θ) and the Schrödinger equation is written in standard form[

∇2
r − 2µ

h̄2 V (r) +
2µE

h̄2

]
ψ(r)− L2

h̄2r2
ψ(r) = 0 (3)
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where

L2 = −h̄2

[
1

sin θ

d

dθ

(
sin θ

d

dθ

)
+

1

sin2 θ

d2

d�2

]
is the angular momentum operator and V (r) is a central potential whose origin is coincident
with a point of the string.

2.1. Eigenfunctions and energy spectrum

Let us perform the separation of variables expressing

ψ(r) = R(r)Y (θ, φ). (4)

Substituting in equation (3) we obtain the set of equations[
r

d2

dr2
r − 2µ

h̄2 V (r) +
2µE

h̄2 r2

]
R(r) = �(� + 1)R(r) and L2Y (θ, φ) = h̄2�(� + 1)Y (θ, φ)

(5)

where �(� + 1) is to be specified later. Separating the second equation with Y (θ, φ) =
�(θ)�(φ) leads to

1

sin θ

d

dθ
sin θ

d

dθ
�(θ) = λ2�(θ) and

d2

dθ2
�(φ) = −λ2�(φ) (6)

where λ is another parameter to be determined.

2.1.1. Spherical harmonics. The presence of the string is displayed in the azimuthal equation
which is subject to the periodic boundary conditions (2). So, we have

�m
α (φ) = 1√

2πα
ei m

α
φ (7)

where m = 0,±1,±2, . . . , α ∈ Re+ and we identified λ = |m|
α

. Requiring regular solutions
in θ = 0, π we obtain � = k + |m|

α
and the polar solutions

�
|m|
α

k (θ) =

√√√√√
(

2k + 2 |m|
α

+ 1
)
�(k + 1)

2�
(
k + 2 |m|

α
+ 1

) sin
|m|
α θT

|m|
α

k (u) (8)

where k = 0, 1, 2, . . . , u = cos θ and T
|m|
α

k (u) are the Gegenbauer polynomials. Therefore,
the generalization of the spherical harmonics required by the cosmic string spacetime is

Y
m
α

� (θ, φ) =

√√√√√ (2� + 1)�
(
�− |m|

α
+ 1

)
4πα�

(
� + |m|

α
+ 1

) sin
|m|
α θT

|m|
α

�− |m|
α

(cos θ) eim
α
φ. (9)

For the eigenvalues of the quadratic Casimir operator we observe a dependence on two integers
and on the angular deficit α which turns the eigenvalues �(� + 1) to non-integer numbers:

�(� + 1) =
(
k +

|m|
α

) (
k +

|m|
α

+ 1

)
. (10)

This dependence of the � value on each of the states within a specific angular momentum
multiplet can be understood since the operators L± = Lx ± iLy are not operators that act
within the Hilbert space. They would create states with the wrong periodicity conditions. The
algebraic construction of the angular momentum states is spoiled from the beginning. We will
argue later that an attempt to redefine these operators to act in the Hilbert space as (L±)

1
α will

not work.
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2.1.2. Radial equations. The above procedure is valid for any problem with a radial potential
V (r). Now we choose a particular potential to solve the radial equation[

d2

dr2
+

2

r

d

dr
− 2µ

h̄2 V (r) +
2µE

h̄2

]
R(r) =

(
k +

|m|
α

)(
k +

|m|
α

+ 1

)
R(r). (11)

Coulomb potential. The Coulomb potential is expressed by −e2

r
. Substituting this in

equation (13) we have[
d2

dρ2
+

2

ρ

d

dρ
− �(� + 1)

ρ2
+
β

ρ
− 1

4

]
R(ρ) = 0 (12)

where β is an arbitrary parameter, ρ = r
βr0

, � = k + |m|
α

, E = − ε0
β2 ; with r0 = h̄2

2µe2 (Bohr

radius divided by two) and ε0 = µe4

2h̄2 (ionization energy). With the ansatz

R(ρ) = C e(−
ρ

2 )ρ�g(ρ) (13)

we are led to the radial equation for g(ρ)

ρ
d2

dρ2
g(ρ) + (2� + 2 − ρ)

d

dρ
g(ρ) + (β − �− 1)g(ρ) = 0. (14)

This is the associated Laguerre equation whose normalized solutions are the associated
Laguerre polynomials

L2�+1
j (ρ) = �(2� + j + 2)

�(j + 1)

eρ

ρ2�+1

dj

dρj
[ρ2�+j+1 e−ρ] with j = 0, 1, 2 . . . .

Therefore, the solution for the radial differential equation is

R(r) = Cαj,k,m

(
1

β

r

r0

)k+ |m|
α

e− 1
2β

r
r0 L

2(k+ |m|
α )+1

j

(
1

β

r

r0

)
(15)

where β is given by j + k + |m|
α

and Cαj,n,m is a normalization constant obtained as

Cαj,k,m = 1(
j + k + |m|

α

)
√√√√ �(j)

2r3
0

(
�

(
j + 2k + 2 |m|

α
+ 1

))3 . (16)

For the energy spectrum we obtain

Eαj,k,m = − ε0(
j + k + |m|

α

)2 . (17)

Clearly, the essential degeneracy is broken, but there is still an accidental degeneracy associated
with a full symmetry of the potential [10]. It is important to point out that the energy levels
depend explicitly on the angular deficit αwhich characterizes the global structure of the metric.

Quantum harmonic oscillator. Proceeding as done before with the hydrogen atom, we can
solve the radial equation (12) for V (r) = 1

2µω
2r2 given by[

d2

dr2
+

2

r

d

dr
− µ2

h̄2 ω
2r2 +

2µE

h̄2

]
R(r) =

(
k +

|m|
α

) (
k +

|m|
α

+ 1

)
R(r). (18)

Making the ansatz

R(x) = Cx� e− 1
2 x

2
h(x) (19)
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where x = (
r
r0

)2
and r0 =

√
h̄
µω

. And using equation (19) in (18) we have

d2

dx2
h(x) +

(
2� + 2

x
− 2x

)
d

dx
h(x) +

(
2E

h̄ω
− 2�− 3

)
h(x) = 0. (20)

Making a new change in variable x → x ′ = x
1
2 , we obtain the same equation as in the

hydrogen atom (14) with solution h
(
x

1
2
) = L

�+ 1
2

j (x). Therefore, the solution for the radial
function R(r) is given by

R(r) = Cαj,k,m

(
r

r0

)k+ |m|
α

e− 1
2 (

r
r0
)2
L
k+ |m|

α
+ 1

2
j

(
r2

r2
0

)
(21)

and the normalization constant is

Cαj,k,m =
√√√√ 2

r3
0

�(j + 1)[
�

(
j + k + |m|

α
+ 3

2

)]3 . (22)

For the energy spectrum we obtain

Eαj,k,m = h̄ω

(
2j + k +

|m|
α

+
3

2

)
. (23)

Again, there is a dependence on deficit angle and the degeneracy attributed to symmetry
rotations (essential degeneracy) is broken. But we see clearly a persistence of the accidental
degeneracy related with even k states for m = 0.

Creation and destruction operators. The last section results show that the eigenvalues for
the harmonic oscillator increase in intervals of h̄ω or of h̄/ωα. This suggests to investigate the
construction of ladder operators for the harmonic oscillator which shall produce these changes.
Since the Hilbert space can be constructed as the tensor product Eρ,φ ⊗ Ez, it is sufficient to
consider the 2D quantum harmonic oscillator with angular deficit. The ladder operators acting
within Ez are the usual ones.

The eigenfunctions of the two-dimensional harmonic oscillator, V (ρ) = 1
2µω

2ρ2, with
angular deficit, obtained by solving the Schrödinger equation under the boundary conditions
given by equation (2) are

�n,m(ρ, φ) = cn,mρ
|m|
α e− 1

2
µω

h̄
ρ2+i m

α
φL

|m|
α
n

(µω
h̄
ρ2

)
. (24)

Here n = 0, 1, 2, . . . , and m = 0,±1,±2, . . . . The associated energies are

En,m = h̄ω

(
2n +

|m|
α

+ 1

)
. (25)

The Hamiltonian for the 2D quantum harmonic oscillator without angular deficit can be
written in terms of creation and destruction operators of right and left ‘circular quantum’

H = h̄ω(a†
dad + a†

gag + 1). (26)

These operators are defined in terms of the usual ax and ay operators by

ad = 1√
2
(ax − iay) and ag = 1√

2
(ax + iay) (27)

the nonzero commutation relations between the four operators ad , ag , a†
d and a†

g being

[ad,a
†
d ] = [ag,a†

g] = 1. (28)
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These relations lead to[
H,

(
ad(g)

)n] = −n(ad(g))nh̄ω and
[
H,

(
a†
d(g)

)n] = n
(
a†
d(g)

)n
h̄ω. (29)

In the case of angular deficits neither the ax(y) nor the ad(g) operators can be defined as
operators acting on the Hilbert space. The reason is that they do not respect the periodicity
of space, leading from states that respect the periodicity, belonging to the Hilbert space, to
states that do not respect, outside the Hilbert space. The circular operators are more suited
for the discussion of the deficit angular case as we are going to show. The products, a†

dad
and a†

gag , that appear in (26) are well-defined operators acting on the Hilbert space since
these products do not change the periodicity in angular variables. The decomposition of
the Hamiltonian in equation (26) is allowed in the conic spacetime. For this it is useful to
consider the space of functions that represents the Hilbert space as embedded in a larger
space of (multi-valued) functions of arbitrary periodicity. Then the operator ad(g) acting in a
function with the periodicity required for it to represent a state of the Hilbert space changes
its periodicity. In the conic space it will correspond to a multi-valued function. This function
will not be associated with a state in the Hilbert space. Nevertheless acting now with a

†
d(g)

over that state restores the periodicity needed for it to correspond to a state belonging to the
Hilbert space. It is seen then that the Hamiltonian turns out to be a well-defined operator
acting within the Hilbert space, as it should be. Let us now discuss the construction of creation
and annihilation operators that are allowed to act, individually, on the Hilbert space. In order
to properly define the ladder operators acting within the Hilbert space it is necessary to define
fractionary powers of the usual creation and annihilation operators. Since the creation and
annihilation operators are non-Hermitian operators, their (fractionary) power should not be
defined through their spectral decomposition. One particularly simple way to define these
highly non-local operators is using the infinite series

(
a†
d(g)

) 1
α = lim

ε→0

(
ε + a†

d(g)

) 1
α = lim

ε→0

∞∑
q=0

Cq, 1
α
,ε

(
a†
d(g)

)q
(30)

where the regulating parameter ε is to be removed after summing the series and Cq,β,ε =
εβ−qβ!/((β − q)!q!). In this way it is straightforward to extend the commutation relations
(29), by computing the commutation relations term by term[

H,
(
ad(g)

) n
α

]
= lim

ε→0

∞∑
q=0

Cq, n
α
,ε

[
H,

(
ad(g)

)q]

= lim
ε→0

∞∑
q=1

Cq, n
α
,ε(−qh̄ω)

(
ad(g)

)q

= (−h̄ω) lim
ε→0

∞∑
q=0

n

α
Cq, n−α

α
,ε

(
ad(g)

)q+1

= −h̄ω n
α

lim
ε→0

(
ε + ad(g)

)( n
α
−1)

ad(g). (31)

Repeating the argument with creation operators we obtain the result[
H,

(
ad(g)

) n
α

]
= −n

α

(
ad(g)

) n
α h̄ω

(32)[
H,

(
a†
d(g)

) n
α

]
= n

α

(
a†
d(g)

) n
α h̄ω

which allows for an interpretation in terms of fractionary quantum creation and destruction
operators.
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It is also straightforward to obtain the action of fractionary power operators on the ground
state

〈ρ, φ|(a†
g(d)

) n′
α |0, 0〉 = lim

ε→0

∞∑
q=0

C
q, n

′
α
,ε
〈ρ, φ|(a†

g(d)

)q |0, 0〉

= lim
ε→0

∞∑
q=0

C
q, n

′
α
,ε

√
µω

πh̄

(µω
h̄
ρ
)q

e−iqφ− µω

2h̄ ρ
2

= lim
ε→0

√
µω

πh̄
e− µω

2h̄ ρ
2
(
ε +

µω

h̄
ρe−iφ

) n′
α

=
√
µω

πh̄
e− µω

2h̄ ρ
2−i n

′
α
φ
(µω
h̄
ρ
) n′

α

. (33)

This gives the eigenfunctions obtained by the direct solution of the differential equations.
Note that each term of this infinite series does not represent a state belonging to the Hilbert
space. Nevertheless the function obtained after summing the series and removing thereafter
the regulating parameter ε has the required periodicity for it to represent a state belonging to
the Hilbert space.

The operator product (a†
ga

†
d) also does not change the periodicity condition and can be in

principle defined in the Hilbert space. Indeed the axially symmetric states not depending on the
angular variable are eigenstates in both the usual and in the conic space cases, being insensitive
to the topological defect of the spacetime. These states are created by applying this operator
product on the fundamental state. Also the action of this product of ordinary operators on
states with angular dependence, that were constructed from the action of fractionary operators
on the fundamental states, is allowed and does not affect its angular dependence. We are thus
led to construct the general basis state vector, corresponding to eigenfunctions (24), as

|n, n′〉αg(d) = (a†
ga

†
d)
n
(
a†
g(d)

) n′
α |0, 0〉. (34)

Note that this exhausts all states corresponding to equation (24). Note also that in equation (34)
we avoided the use of the fractionary power operators (a†

g)
1
α and (a†

d)
1
α at the same time.

Indeed inspection shows that the action of their product on the fundamental state, although
not forbidden by periodicity considerations, leads to non-normalizable states. Therefore, all
states of the model are given by linear combinations of

|n, n′〉αg and |n, n′〉αd . (35)

The energy of the basis states can be calculated, through relations (29) and (32), as

E = h̄ω

(
2n +

n′

α
+ 1

)
. (36)

Let us now use these operators to discuss some questions related to the hidden symmetry
of the oscillator. It is well known that the angular momentum algebra describes the degeneracy
of the 2D oscillator. The ‘angular momentum’ operators are defined as

J± = a†
d(g)ag(d) (37)

and

Jz = 1
2 (a

†
dag − a†

gad). (38)

The Casimir operator J2 is

J2 = 1
2 (J+J− + J−J+) + J2

z = 1
2 (N g + N d)

[
1
2 (N g + N d) + 1

]
(39)
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where

N g + N d = a†
gag + a†

dad = H

h̄ω
− 1. (40)

This leads to the identification of the J quantum number associated with the square of the
angular momentum with the eigenvalue of (Ng+Nd )

2

J =
〈
Ng + Nd

2

〉
. (41)

In the case of angular deficit neither the J+ nor the J− operators are defined as operators
acting within the Hilbert space of the 2D harmonic oscillator spoiling the hidden SU(2)
symmetry. These operators should be exchanged by J

1/α
± to act in the Hilbert space.

Nevertheless the composite operators J2, J z, N g and N d are bona fide operators. The
relationship expressed by equations (39)–(41) is thus extended to the deficit angular space
case. Let us consider then the action of N g + N d on the basis states of equation (34). Taking
n′ = 2m in that equation it is straightforward to see that

N g + N d

2
|n, 2m〉αg(d) =

(
n +

|m|
α

)
|n, 2m〉αg(d). (42)

In other words these states have quantum numbers

j = n +
|m|
α
. (43)

This reproduces exactly the form obtained in section 2.1 by the resolution of the angular
differential equations in (3 + 1)-D spacetime.

It can also be understood why the operators (J±)1/α do not generate all states of a multiplet.
Since a†g(d) and ag(d) appear simultaneously with fractionary powers in (J±)1/α they generate
non-normalizable functions when applied to the basis states of equation (34). This is necessary
to allow for the change in j value within the multiplet.

3. (N + 1)-dimensional generalization

In order to construct an N-dimensional generalization for Coulomb and quantum oscillator
problems we consider the metric

ds2 = dt2 −
(

dρ2 +
1

ρ2
dφ2 + dx2

3 + · · · + dx2
N

)
. (44)

The variable φ is assumed to present an angular deficit, φ → φα. This spacetime
generalizes the cosmic string spacetime and the (N − 2)-brane is considered in x1 = x2 = 0.
We have taken out one generator of the angular momentum algebra and assumed non-trivial
boundary conditions for the orbit it generates in real space breaking thus the SO(N) symmetry.

We introduce the hyper-conical spacetime using hyper-spherical coordinates according to
[11]. The metrics reads

gµν = diag(1,−1,−r2,−r2 sin2 θ,−r2 sin2 θ sin2 φ1, . . . ,−r2 sin2 θ sin2 φ1 · · · sin2 φN−1)

(45)
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where

0 � r � ∞
0 � θ � π

−π � φ1 � π

...

−πα � φN−1 � πα.

(46)

The modified range of the variable φN−1 is responsible by the conical character. In this way
the N-dimensional Schrödinger equation can be written as [12][

∇2
r − L2

h̄r2
− µV (r)

h̄2 +
2µE

h̄2

]
�(r) = 0 (47)

where

∇2
r = 1

rN−1

d

dr

(
rN−1 d

dr

)
(48)

and

L2 = 1

sinN−2 θ

d

dθ

(
sinN−2 θ

d

dθ

)
+

1

sin2 θ sinN−3 φ1

d

dφ1

(
sinN−3 φ1

d

dφ1

)

+ · · · +
1

sin2 θ sin2 φ1 · · · sin2 φN−4

1

sin φN−3

d

dφN−3

(
sinφN−3

d

dφN−3

)

+
1

sin2 θ sin2 φ1 · · · sin2 φN−3

d2

dφ2
N−2

. (49)

For V (r) to be strictly radial we can perform the separation of variables method N times and
obtain the angular equation

L2Yn0,...,nN−3(θ, φ1, . . . , φN−2) = �(� +N − 2)h̄2Yn0,...,nN−3(θ, φ1, . . . , φN−2) (50)

where N is the number of spatial dimensions. Introducing

k =
N−3∑
i=0

ni

where the integers ni are separation constants, the non-trivial boundary condition will affect
the quantum number � in the same form as in the three-dimensional case

� = k +
|m|
α
. (51)

The radial equation will be[
r2 d2

dr2
+ r(N − 1)

d

dr
+ r2

(
2µE

h̄2 − µ

h̄2V (r)

)]
R(r) = �(� +N − 2)R(r). (52)

3.1. (N + 1)-dimensional solutions for the hydrogen atom and quantum harmonic oscillator

In the Coulomb problem the radial solutions turn out to be

R(r) = C

(
r

r0

)�
e− 1

2 (
r
r0
)
L2�+N−2
i

(
r

kr0

)
(53)
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where k2 = − ε0
E

, i = 1, 2, . . . , and C is a normalization constant. The energy spectrum is

E = − ε0(
i + � + N−3

2

)2 . (54)

For the oscillator problem the radial solutions are

R(r) = C

(
r

r0

)�
e− 1

2 (
r
r0
)2

L
�+ N−2

2
i

(
r2

r2
0

)
(55)

where C is a normalization constant and i = 1, 2, . . . . The energy spectrum is

E = h̄ω

[
� + 2i +

N − 4

2

]
. (56)

Let us now discuss the relationship between both potential solutions along the lines
discussed for trivial topology in [8].

3.2. Relationship

With the generalization of the spacetime above it is straightforward to generalize the mapping
[8] of the states of both problems:

Hydrogen atom Harmonic oscillator

Radial variable 1
β
r
r0

(
r
r ′0

)2

Energy
( ε0
E

) 1
2 E′

2h̄ω

Generalized angular momentum quantum number 2� �′ + λ

Spatial dimension N N ′
2 − λ + 1

Azimuthal quantum number 2 |m|
α

|m′ |
α′

Angular deficit α α′(2α′)

where λ allows for a freedom in the mapping. For instance if λ = 0 we have N ′ = 2(N − 1)
as discussed in [13] in the case without angular deficit whereas the general case N 
= 0 is
treated in the usual spacetime in [8].

This mapping reveals that the direct relation of the even states of the quantum harmonic
oscillator and all states of hydrogen atom is attainable in the spacetime with angular deficit. It
is to be pointed out that the relation can be established with different angular deficits α and α′

and azimuthal quantum numbers just keeping 2|m|/α = |m′|/α′. Also note that, since l and l′

are not integers, a specification of the azimuthal quantum numbers m and m′ is in order to
obtain a mapping between the orbital quantum numbers l and l′. This is not necessary in the
usual space models for which only � and �′ are needed.

4. Conclusions

In this work, we studied the solutions of the Schrödinger equation in cosmic string-like
spacetimes with a point in the string acting as a source for a radial potential. We performed
an extension of the spherical harmonics to the non-trivial spacetime. We verified that the
global characteristic of the spacetime is present explicitly in the structure of states and energy
spectrum. The deficit angle splits the degeneracy associated with rotational symmetry in
energy spectrum, but the accidental degeneracy is still partially present.
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The extension of the algebraic method of construction of the harmonic oscillator states
through the introduction of fractionally powered ladder operators allowed the discussion of
its hidden symmetry. By the use of the Schwinger construction of the angular momentum
operators some light was shed on the dependence of the angular momentum Casimir operator
values on the angular deficit and on the algebraic construction of the angular momentum
states. Further developments in this analysis can be foreseen by noting that in terms of the
fractionary power creation and destruction operators that act within the Hilbert space and
the ordinary number operators N d(g) = a†

d(g)ad(g) that also act within the Hilbert space,
the Wigner–Heisenberg algebra becomes a kind of deformed algebra. For instance the basic
relation should be pointed out, N d(g)a

1/α
d(g) = a

1/α
d(g)(N d(g) − 1/α). The fractionary power

ladder operators are here defined through the non-perturbative use of infinite series. Although
this construction has allowed a consistent treatment of these operators, alternative treatments
should be the object of further investigations with the aim of obtaining a greater mathematical
rigour as well as of finding less laborious procedures. Strategies based upon the consideration
of the power variable as a complex parameter within an analytical extension procedure might
be considered. For particular α values the operators introduced here become local. For
instance, if α = 1/2 the raising operators become (a†)2 and the obstruction pointed out to the
simultaneous use of left and right raising operators disappears. In these cases the presence of
the string affects the quantum states simply as a superselection rule.

Moreover, the remarkable point raised by this study is that the attempt to allow for
the relationship between the Coulomb potential in 3D and the oscillator problem in higher
dimensions, if the 3D space presents conical topology, leads naturally to the construction of
the conic spacetimes of higher dimensions. In this sense a quantum mechanical issue is used
as a guide to relate topological spacetimes in different dimensions.

The somewhat artificial consideration of the source of the potential point exactly over the
string restricts severely any attempt to use these results as a means of detecting a real cosmic
string.
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